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The transmission line modelling (TLM) method is applied to acoustic problems.
A three-dimensional (3-D) symmetrical condensed node for acoustics and the corresponding
scattering matrix are presented. A full development of the analogy between acoustic-"eld
quantities and pulses at the nodes is carried out that also allows the de"nition of excitation
techniques and the imposition boundary conditions. Finally, numerical examples prove the
satisfactory behaviour of the TLM method in acoustics.
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1. INTRODUCTION

In the last 20 years, the transmission line modelling (TLM) method has been extensively and
successfully used for the numerical simulation of electromagnetic wave propagation
problems. The method substitutes a portion of an electromagnetic medium by a unitary
element, termed &&node''. Each node comprises an appropriate set of interconnected
transmission lines whose parameters (inductance and capacitance per unit length) are
chosen to describe the propagation characteristics of the medium they substitute. Some of
these lines allow interconnection with adjacent nodes (link or main lines), while the rest are
only connected to one node and allow adjustment of the electric permittivity and magnetic
permeability, i.e., the wave velocity and the impedance of the medium (stub lines).
Attenuation due to the Joule e!ect can also be taken into account by including in"nitely
long stub lines at the node. In this manner, the electromagnetic wave propagation problem
through a certain medium is substituted by an analogous but simpler problem of
propagation and scattering of electric and current pulses inside a mesh of interconnected
transmission lines [1]. The TLM method is conceptually di$cult because a certain
understanding of the propagation phenomenon under study and transmission line concepts
is required before its application. This has probably been the main reason for which the
method has not become as popular in "elds outside electromagnetics as other numerical
methods such as the moments method (MM) or "nite di!erences in the time domain
(FDTD), which have a more direct relationship between mathematical equations and
numerical implementation, independently of the physical origin of these equations. One of
the main features of the electromagnetic version of the TLM method is that charge and
energy conservation conditions are included in its formulation; therefore, unless
inappropriate boundary conditions are imposed, the method is intrinsically stable.
However, perhaps the most outstanding advantage of TLM is that it provides a direct
simulation of the phenomenon and not of the equations governing it. This feature has been
0022-460X/01/120207#16 $35.00/0 ( 2001 Academic Press
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used to simulate e$ciently the presence of special and di$cult situations such as thin
conducting wires [2], multi-wire systems [3] or sharp regions [4] without using the "ne
mesh required by other methods. Indeed, the presence of a thin wire is usually considered in
FDTD as a means of imposing zero tangential electric "eld on the wire surface. This
boundary condition requires the use of a mesh at least as "ne as the wire radius, which is
very expensive in memory and time calculation. As regards the TLM method, the wire can
be considered not as equations, but directly as a simple transmission line circuit that can be
added to the standard node de"ning a portion of medium much larger than the wire [2].
By means of this direct simulation, the wire can be modelled by using a very coarse
mesh, which implies a considerable reduction in time calculation and memory
requirements. This same concept can be easily extended to take into account the presence of
multi-wire systems by simply adding an equivalent circuit for each wire [3]. The modelling
of sharp conducting regions is another problematic situation in numerical methods because
the fast variation of the physical quantities around these regions usually involves the use of
a very "ne mesh. In these regions, modi"ed TLM nodes which carry out a direct modelling
of these points allow the use of a coarse mesh without loss of accuracy [4]. It is in these
critical situations in which the TLM method (by means of the inclusion of new special
elements in a relatively simple and elegant form) behaves more advantageously when
compared to other methods, thus justifying the growing interest concerning the TLM
method in recent years [5]. The parallelism existing between di!erent types of propagation
(linear sources and sharp regions in "lter design are also present in the acoustic case) seems
to indicate that suitability of the TLM method for its application to problems outside the
electromagnetic "eld.

Despite the fact that the TLM method can be applied to any phenomenon involving wave
propagation, most of the works in the literature have concentrated on electromagnetic
problems, with other possible applications remaining in an early stage of development.
The successful application to electromagnetic phenomena seems to indicate that the
same advantages will be exhibited when applied to other "elds such as acoustics. In
fact, simple electric-circuit models have been extensively used and can easily be found in
classic books [6]. The TLM method can be considered as a more general and complicated
circuit that includes spatial and temporal variables. As regards acoustic phenomena
modelling with the TLM method, a few guidelines are included in reference [7], and as
almost unique applications in acoustics, the TLM method is used to derive the radiation
pattern of two-dimensional acoustic radiators [8], applied as a numerical tool for active
noise control [9], also in a two-dimensional (2-D) case, and to study the human vocal tract
[10]. As regards this last contribution, although interesting and valuable, the node it
presents shows two undesirable properties when its size is di!erent in the three Cartesian
directions: "rst, the characteristic impedance of the link lines depends on its direction, this
may produce undesired re#ections between nodes, and second, the speed of pulses is equal
for the three Cartesian directions in spite of the fact that the distance they must travel is
di!erent, which introduces a synchronism problem in the mesh. However, these and other
applications represent important although speci"c contributions to the extension of the
TLM method to the modelling of acoustic problems. The aim of this work is to present
a more complete and uni"ed description of most of the theoretical aspects needed for a full
application of the method in acoustic problems. The plan of the paper is as follows. In
section 2, a versatile three-dimensional (3-D) symmetrical condensed TLM node for
acoustics is presented together with the derivation of the scattering matrix that provides the
re#ected pulses corresponding to a set of incident ones. Certain aspects related to analogies,
excitation technique and special boundary conditions are given and discussed in section 3.
Some numerical applications of di!erent types are set out in section 4 to demonstrate the
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feasibility of the TLM method for dealing with acoustic problems. The "nal section
summarizes the main conclusions of the work.

2. AN ACOUSTIC CONDENSED NODE

The acoustic "eld in a #uid of equilibrium density, o, and coe$cient of compressibility, p,
is governed by
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where p denotes dynamic pressure and u
i
the ith component of the particle velocity.

Let us now consider the transmission line circuit in Figure 1(a). It is formed by the parallel
connection of six transmission lines of identical characteristic admittance, >

0
"Z~1

0
, with

length Dl
x
/2, Dl

y
/2, and Dl

z
/2, depending on its orientation. Each one of these lines de"nes

a voltage and a current pulse travelling towards the junction from a certain Cartesian
direction. An extra line, line 7, is an open-circuited or capacitive stub of characteristic
admittance>>

0
, which de"nes a voltage that is common to the rest of the lines but with no

particular direction associated with it. The speed of pulses at all the lines is adjusted so that
its length is covered in a "xed time dt/2. The circuit thus de"nes a common voltage <, with
a total capacitance C

T
">

0
(6#>)dt/2. This circuit will be denoted the parallel node for p.

It can be shown that its behaviour is controlled by the following equation:
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This equation is analogous to equation (1a) if the following equivalencies are considered:
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where I
i
is a current along the i direction.
Figure 1. (a) Parallel node for p. (b) Series node for u
x
.
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As regards the circuit of Figure 1(b), it is formed by lines 1 and 2 of the previous
circuit, both de"ning voltage and current I

x
with propagation along the x direction. An

extra short-circuited line of characteristic impedance Z
x
Z

0
is series connected to lines 1 and

2. The length of this line is also covered in dt/2 time. This inductive stub contributes to I
x

with no particular direction and adds inductance to the circuit so that the total inductance
is ¸

Tx
"(2#Z

x
)Z

0
dt/2. The circuit de"nes I

x
, this circuit will be termed as the series node

for I
x

and the di!erential equation that governs it is
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which is equivalent to equation (1b) provided
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Similar series nodes for I
y
and I

z
, involving lines 3}6 and two extra inductive stubs 9 and

10, reproduce equations (1c) and (1d). It therefore seems that the whole set of equations (1)
for a cubic portion of #uid with dimensions Dl

x
Dl

y
Dl

z
can be described by a circuit of

transmission lines resulting from combining one parallel and three series circuits.
Unfortunately, these circuits are partially coupled in a way that does not allow a direct
connection, i.e., a fully circuital representation. In fact, although the analogies established
equations (3) and (5) are very similar, there are important di!erences arising from this
coupling. The common voltage at the parallel node, for example, di!ers from the individual
voltage pulses at a series node, or the common current I

x
at the series node is not exactly

I
x

of the parallel node in Figure 1(a). Nevertheless, the basic ideas presented above
are still useful to construct a 3-D node starting from a parallel node for pressure and
three series nodes for the particle velocity. The main di!erence is that these circuits
are not physically connected. Instead, formal connections governed by equations (1) are
considered, resulting in the node shown in Figure 2, in which connections at the centre of
the node are represented as a black box to emphasize that the connection between the
circuits is not physical but formal. It is important to note that all the "eld quantities
are de"ned at the same point, the centre of the node, and for this reason the node is said to
Figure 2. Acoustic symmetric condensed node.



TABLE 1

Electric}acoustic equivalencies for the acoustic node

Line Pressure Particle velocity Capacitance Inductance Direction
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be of the condensed type. The basic concepts of the analogy are summarized in Table 1,
which shows the "eld quantities and direction of propagation associated with the
lines, together with the capacity and inductance introduced at the node by the presence of
the line.

Once the acoustic node has been de"ned, the TLM algorithm proceeds as follows. By
means of a proper discretization of space, a mesh of transmission lines formed by
interconnecting TLM nodes substitute the original medium. Time is also discretized in dt
units, dt being the time needed for the voltage and current pulses to travel from the centre of
the node to the centre of an adjacent node through a link line, lines 1}6, or back to the same
point through a stub, lines 7}10. For time ndt and for each node, a set of incident voltage
pulses travel towards the node, reaching its centre at time ndt, scattering, and producing
re#ected pulses to all the lines in the node. Those pulses re#ected to link lines connect to link
lines of adjacent nodes, becoming incident pulses at time (n#1)dt, while pulses re#ected to
stubs generate incident pulses at the same node and the next time step, thus controlling the
velocity of propagation.

If
n
<i and

n
<r stand for the column vectors containing the ordered incident and re#ected

pulses, these are related by

n
<r"SI

n
<i, (6)

where SI is a 10]10 matrix, termed the scattering matrix. The elements of SI are to be
determined so as to contain all the information described by equations (1), together with
energy conservation conditions. This procedure is usually very complicated; nevertheless,
the concept of common and uncommon lines in the parallel and series nodes in Figure 1
considerably reduces the complexity of this task [11].

To obtain the "rst column of the scattering matrix a unique and unitary voltage pulse,
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1
"1, travelling towards the centre of the node through line 1, is considered. This line
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x

propagating along the x direction. These magnitudes appear in equations
(1a) and (1b), i.e., in the parallel circuit for p, and the series circuit for I
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incident pulses for all the lines in the node, the following initial form of the scattering matrix
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can be obtained
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To obtain the explicit values for the parameters appearing in SI , consider again the unitary
pulse through line 1 which produces pulses re#ected to lines 1}7 with amplitudes given by
the "rst column of matrix (7). All the lines except 1 and 2 appear in the series or in the
parallel circuit but not in both circuits; these are the uncommon lines. Information about
these lines is only contained in one of the circuits in Figure 1, with no formal coupling, so
the coe$cients c, d, and e

x
can be easily calculated from the transmission coe$cient for the

corresponding circuit. By doing so,
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As regards lines 1 and 2, they are common to both circuits so the parameters a
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cannot be obtained directly from one circuit or the other because there is some degree of
coupling between them. Instead, these will be directly calculated from equations (1a) and
(1b), which are the actual origin of this coupling, and Table 1. A "rst order approximation
for equation (1a) is
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To evaluate the derivative of the total charge Q
T

stored at the node through the capacitive
stub, it must be noted that in dt/2 the incident pulses turn into re#ected pulses. Therefore, in
this dt/2 time, the charge at the stub changes from an initial value proportional to
capacitance of the line and the incident voltage pulse to a "nal value proportional to the
capacitance and the re#ected pulse. Concretely,
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So, from equations (10) and (11), the coupling condition imposed by equation (1a) is the
following charge-conservation condition at the parallel node:
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By a similar procedure involving equation (1b), it can be shown that the following
continuity of potential condition must also be met:
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Equations (12) and (13) represent two additional conditions from which parameters a
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The values corresponding to columns 2}6 of the scattering matrix are analogous to the
values given by equations (8) and (14) if the appropriate value of the relative characteristic
impedance is chosen. Finally, applying this procedure to pulses incident from the stubs
yields
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where it is understood that the appropriate subscript for Z is taken for the last two
parameters.

3. EQUIVALENCES AND RELATED TOPICS

In this section, some aspects about the choice of the node parameters are presented and
discussed. Precise expressions that de"ne "eld quantities starting from voltage or current
pulses are also obtained and a discussion about how to impose a certain external "eld and
special boundary conditions are also considered.

3.1. GENERAL RELATIONSHIPS

Equations (3) and (5) relate the equilibrium density and coe$cient of compressibility to
the total capacitance and inductance of the node. So, for a certain #uid, the following
expression is met:
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It must be noted that the equation for o holds for all the Cartesian directions, so Z and Dl
can take coherent subscript, x, y, or z. From the above equations, the relative admittance
and characteristic impedances are easily obtained. In addition, the group velocity and
acoustic impedance of the modelled medium at low frequencies are given by

l
g
"

2l
l

J(6#>)(2#Z)
, Z

AC
"

Z
0

Dl S
2#Z

6#>
, (17)



214 J. A. PORTID AND J. A. MORENTE
where l
l
, Z, and Dl can take the subscripts x, y, and z, l

l
being the speed of voltage pulses at

a given line.
From the above equations it becomes clear that the value of Z

0
is not really relevant since

the parameters > and Z are enough to de"ne appropriate values for group velocity and
acoustic impedance. Nevertheless, a judicious choice may simplify some expressions.
Concretely, the following value will be chosen:
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N. With this choice there is no need for using stubs at all for an

isotropic medium when the node size is identical in all Cartesian directions and the time
step takes its maximum allowable value of

dt"
h

l
g
J3

. (19)

In addition, for isotropic inhomogeneous media, the use of the capacitive stub alone allows
o and p to be determined, while conversely, the inductive stubs alone are able to control the
main characteristics if the medium shows anisotropic properties.

To obtain the relationship between the voltage pulses and "eld quantities, the common
voltage at the parallel node in Figure 1(a) and the common current at the series nodes in
Figure 1(b) must be calculated. Thevenin's equivalent circuit from the junction terminals for
a given line with incident and re#ected pulses is a series connection of its characteristic
impedance and twice the incident voltage pulse [7]. Thus, the need for re#ected pulses is
avoided and the relations are simpler. Thevenin's theorem for the nodes in Figure 1 for
p and I

x
yields the circuits in Figure 3, from which the following expressions for the pressure

"eld and particle velocity in the x direction can be obtained:
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Similar results are directly derived for u
y
and u

z
.

Figure 3. Equivalent circuits for p and u
x
.
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3.2. EXCITATION TECHNIQUE

A direct consequence of equation (20) is that voltage pulses needed to impose a given
acoustic "eld p
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These equations yield voltage pulses that can be added at each time step to pulses already
existing in the TLM mesh, thus providing a way to excite a desired acoustic "eld. However,
some usual but particular cases can be considered regarding the excitation technique.

The "rst case to consider is the presence of a rigid piston that vibrates with a certain
velocity u

0
(t). The geometry for an x-oriented piston between two nodes is shown in

Figure 4(a). The piston connects to link line 1 of node (i, j, k) and to line 2 of the node
(i!1, j, k). Considering only the right side, at time ndt, a re#ected pulse

n
<r

1
travels towards

the piston. As the piston e!ect is "xing the velocity and this acoustic quantity is related to
current, the piston can be electrically modelled by a current source i(t)"u

0
(t)/Dl

x
.

Figure 4(b) is the equivalent circuit for the situation at the moment the re#ected pulse
reaches the piston, time (n#1

2
)dt. From this circuit it can be seen that
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from which the incident pulse at the next time step can be obtained.
Figure 4. (a) x-oriented piston. (b) Equivalent circuit.
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A case similar to a piston is that of a source that "xes a certain pressure p
0
(t). The

equivalent circuit is similar to that of Figure 4(b), with the current source substituted by
a voltage source v (t)"p

0
(t). The equation allowing the incident pulse at n#1 time step to

be obtained is now
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The "nal situation of interest is that in which sources are so far away that their simulation
would require an extremely large mesh. This is the case, for example, of a plane wave
propagating towards a certain scatterer. The incident wave is perfectly known and
described by means of analytical functions for pressure and particle velocity. In these cases,
it is useful to de"ne a closed imaginary surface whose limits are halfway between nodes and
with all the scattering objects inside the region it de"nes. The incident "eld is calculated at
intermediate time steps over the imaginary surface. The corresponding voltage pulses are
then calculated from equation (21), being added to the existing pulses of adjacent lines
entering the closed surface and subtracted from existing pulses of adjacent lines outside this
region [12]. In this manner, the imaginary surface is transparent to the scattered "eld but
imposes the extra incident "eld so as to let the total "eld propagate inside the inner region
while allowing only the scattered "eld to escape from the closed surface.

To illustrate the above discussion, consider, for instance, a portion of the whole closed
surface that is plane and oriented normal to the x direction, halfway between nodes (i, j, k)
and (i#1, j, k). If, for a certain time, (n#1
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)dt, the incident "eld at the interface is given by
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3.3. BOUNDARY CONDITIONS

The modelling of objects or special conditions in the medium can be taken into account
in di!erent ways. The most direct form is to introduce the element as a speci"c boundary
condition on pressure, particle velocity or as a combination of both. This is done by simply
substituting the presence of an object by its acoustical impedance. In spite of its simplicity,
this method provides accurate results for a great number of problems. It must be noted that
the acoustic impedance is a pressure divided by a particle velocity; however, only electrical
impedance must be considered in the TLM mesh. According to the analogy summarized in
Table 1, this means that a given acoustic impedance normal to a certain direction
corresponds to an electrical impedance in the TLM mesh that equals the acoustic
impedance multiplied by the node size in that particular direction.

Now suppose that a certain node (i, j, k) is located at the right side of a certain object
which can be modelled by means of an acoustic impedance Z

A
. At time (n#1
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)dt, a re#ected
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n
<r

1
(i, j, k) reaches the object from the node. Thevenin's theorem allows an equivalent
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to be de"ned. It is then straightforward to obtain the total voltage at the line from which the
following incident pulse is obtained:
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In the particular case of a perfectly rigid wall, the acoustic impedance is R and the pulse
re#ects, maintaining amplitude and sign.

The problem of modelling in"nite-size media is carried out by introducing an arti"cial
truncation of the TLM mesh as close as possible to the objects that scatter the acoustic "eld.
The eliminated medium is substituted by appropriate absorbing boundary conditions
(ABCs) which must eliminate the arti"cial re#ection that would occur at the truncated
limits. As regards electromagnetic applications, the most usual conditions include matching
of the mesh by substituting the truncated medium by its electromagnetic impedance or
TLM adaptations of conditions usually used in the FDTD method [13]. These conditions
provide satisfactory results for certain angles, but important re#ections may appear for
other orientations. In recent years, conditions based on introducing a special dissipative
medium that separates components of the "eld (perfectly matched layer), produce almost
negligible re#ection for all incidence angles [14]. A complete study of the behaviour of
di!erent ABCs in acoustic applications is beyond the scope of this work, so, for the moment,
the ABCs used in the numerical applications presented in the next section will use the
natural matching way that the TLM suggests, i.e., equation (25) with an electrical load of
value of

Z
L
"

Z
A
Dl

cos/
, (26)

where Z
A

stands for the acoustic impedance of the eliminated medium, Dl is the node length
in the normal to the boundary}surface direction, and / is the incident angle. With the
inclusion of the angle, which be calculated for any node at the boundary, the results are
quite satisfactory unless a dispersive medium is considered, since in this case each frequency
has its own incident angle. Figure 5 shows the re#ection coe$cient versus frequency for
normal and 453 incidence. In both cases, the re#ection coe$cient is below !20 dB for
normalized frequencies ranging from zero to Dl/j"0)1. This is fairly a good result for such
a simple condition, comparable to other results obtained with more elaborate conditions
[15]. The explanation for the poorer re#ection coe$cient for frequencies above the
normalized frequency value 0)1 is not due to the ABC but due to the numerical dispersion
introduced by the discrete mesh. A comparative study of the dispersion introduced by the
spatial discretization in the TLM and FDTD methods for electromagnetic applications
shows that both methods introduce similar numerical errors due to numerical dispersion
Figure 5. Re#ection coe$cient for normal and 453 incidence: ** normal incidence; - - - - 453 incidence.
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[16]. This unavoidable erroneous behaviour increases with the frequency, thus introducing
a limiting upper frequency for the valid results. In normalized terms, this upper frequency is
Dl/j"0)1 [16], which is in good agreement with the acoustic results shown in Figure 5.

4. NUMERICAL RESULTS

To demonstrate the applicability of the acoustic node and the considerations discussed in
the previous sections, di!erent practical problems are solved. The "rst example consists in
determining the resonant frequencies for a cubic box "lled with air. The box is limited by
rigid walls with lengths (20 cm, 30 m, 40 m) and is modelled with a mesh of symmetrical
nodes of equal direction in all Cartesian directions, Dl"2 cm, maximum allowable time
step, dt"3)48853]10~5 s, with no capacitive nor inductive stub. Taking 331 m/s as the
speed of sound in air, this node size and the limit imposed by numerical dispersion, the
maximum valid frequency is slightly above 1)6 kHz. A delta pulse is added to all the lines of
the node located at point (1, 1, 1) and the output pressure is taken at point (9, 14, 19). The
excitation and output points are taken near walls to avoid points where a certain mode may
vanish. Ten thousand time calculations have been carried out for the Fourier transform to
give a frequency precision slightly below 3 Hz. The total CPU time needed to carry out this
calculation on a Pentium II at 350 MHz has been 36 s.

Figure 6 is a plot of the numerical output pressure versus frequency in which resonances
are clearly appreciated, while Table 2 is a comparison of theoretical and TLM resonant
frequencies for some low-frequency modes. Good agreement is observed for all the modes
below the above-mentioned limiting frequency.

To test the e!ect of stubs, the same cavity has been modelled with a mesh of nodes of
di!erent size in each Cartesian direction. In this case, the node size is (2, 3, 4 cm). With this
choice, the cavity is (10, 10, 10) in node units, the maximum valid frequency is now lower
than in the previous example, slightly above 820 Hz. Ten thousand calculations have been
carried out requiring a CPU time of 20 s. The resonant frequencies and relative error of
modes below this limiting value are presented in the last two columns of Table 2. Results are
also satisfactory for frequencies below the upper limit mentioned above. Even for modes
above 820 Hz, such as modes 020 and 112, errors are quite acceptable.

Finally, consider an open example in which special excitation technique and boundary
conditions are required. The problem is the long rectangular duct loaded with a cubic
Figure 6. Output pressure versus frequency for the rectangular cavity of dimensions (20, 30, 40 cm). The TLM
node size is (2, 2, 2 cm).



TABLE 2

Resonant frequencies in Hz for the rectangular cavity of dimensions (20, 30, 40 cm)

TLM mesh TLM mesh
Mode Theory (2, 2, 2 cm) Error (%) (2, 3, 4 cm) Error (%)

001 413)8 412)8 0)24 415)7 0)46
010 551)7 550)4 0)24 553)2 0)27
011 689)6 688)0 0)23 688)8 0)12

002}100 827)5 825)6 0)23 825)6 0)23
101 925)2 923)0 0)24 923)0 0)24
012 994)5 991)8 0)27 991)8 0)27
020 1103)3 1097)9 0)51 1109)4 0)55
112 1292)8 1292)8 0)0 1287)1 0)44

Figure 7. Long duct loaded with a Helmholtz resonator.
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Helmholtz resonator at the top (Figure 7). A fairly good approximation for the resonant
frequency of the Helmholtz resonator is obtained by considering an analogous electric
circuit formed by the series connection of a capacitor and an inductor [17]. This
zero-dimensional model provides the following approximated value for the resonant
frequency:

f
r
"

c

2nS
S

<¸@
, (27)

where < is the cavity volume of the resonator, S the neck area, and ¸@ e!ective length. This
e!ective length takes into account the volume of air near the neck and for our example it is
¸@"¸#1)7a, where a is the radius of a circular neck of equal area [17]. The resonator side
is 3 cm long in all directions and the neck is 1 cm long with a square hole of side 1 cm
located at the centre of a side. With these values<"27 cm3, S"1 cm2, and ¸@"1)959 cm,
therefore the theoretical value for the resonant frequency given by equation (27) is 724)3 Hz.
The dimensions of the duct are 50, 5, and 3 cm in the x-, y-, and z-Cartesian directions



Figure 8. Pressure transmission coe$cient versus frequency for the long duct with Helmholtz resonator:**
TLM; }d} FDTD.
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respectively. The system is modelled with a mesh of condensed nodes of equal size in the
three Cartesian directions, Dl"0)25 cm, using the maximum time step, dt"
4)36065]10~6 s. This value of Dl ensures valid results slightly above 13 kHz. The mesh
dimensions are (200, 36, 12) in Dl units. A Gaussian pulse is used to excite the fundamental
mode at an x-plane located at x"5 with a time constant of 13 000/s which corresponds to
a bandwidth of 6)5 kHz. For the considered "eld, propagation takes place along the axis of
the ducts for all frequencies, so matching ABCs based on equation (26) are used with /"0.
Figure 8 shows the pressure transmission coe$cient obtained with the TLM method. As
expected, the Helmholtz resonator eliminates the propagation at frequencies near the
resonance. The numerical value corresponds to 733)8 Hz, which is in close agreement with
the theoretical value provided by equation (27). An independent "nite-di!erences solution is
also included for comparison. The total CPU time needed to carry out 10 000 TLM
calculations in this large mesh has been 19 min 20 s, while the time required for the FDTD
calculation has been slightly lower, 16 min 50 s. This small di!erence between both
calculations is surprising. E!ectively, the FDTD scheme calculates only four quantities
while the TLM algorithm, at least, determines six voltage pulses, 1)5 times the FDTD
requirement. This factor seems to indicate that the calculation time using the TLM
method must be 1)5 times the FDTD one. This is basically true in a simple situation
such as the one presented in the "rst example where, as indicated, the time required
by the TLM algorithm was 36 s, while the FDTD method spent only 25 s for the same
mesh. With regard to the second example, the imposition of rigid boundaries is more
direct in the TLM method, thus reducing the expected di!erence in the CPU time. It is
worth noting that this extra information provided by the TLM method, the total
"eld quantities at the centre of the node and some of these quantities at points halfway
between nodes, adds versatility to the method when imposing the presence of rigid or
other types of boundaries, not only halfway between nodes but also at their centre. In
fact, the problems considered in this section have been chosen so that each rigid boundary
is located exactly between nodes, but in general, boundaries will be placed at arbitrary
points and this extra possibility for locating boundaries is very useful for considering
these problems without the need of extra interpolations. Finally, it is interesting to
note that using a "ne mesh not in the whole problem, but only at points near the resonator
neck, where rapid "eld variations are present, may considerably reduce the computation
time.
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5. CONCLUSIONS

A 3-D symmetrical condensed TLM node for the modelling of acoustic problems has
been presented in this paper. The node is a formal connection of individual transmission
line circuits that shows interesting properties such as symmetry, versatility to model
di!erent situations, de"nition of "eld quantities at a unique point, etc. The scattering matrix
has been obtained by using the concept of common and uncommon lines for coupled
circuits. These circuits are also useful to de"ne the quantities involved in the
acoustic-electric analogy, and the results are applied to describe the excitation
technique and the presence of special conditions. Finally, numerical examples demonstrate
the capability of the TLM method for dealing with acoustic phenomena with an accuracy
similar to that obtained with other methods such as FDTD. The favourable behaviour
demonstrated by the TLM method when applied to specially di$cult electromagnetic
problems (also present in the acoustic case), together with the versatile properties that
the inclusion of stubs provides the presented 3-D acoustic node, seems to be a starting
point for the numerical simulation of acoustic problems from a di!erent and promising
point of view.
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